m—

PApicN i
O PEY w/'
/ E@ﬁiﬂs %

Karrot Penetration Test

Karrot

V1.0
Amsterdam, April 1st, 2025

Public

Document Properties

Client Karrot

Title Karrot Penetration Test

Targets + https://codeberg.org/karrot/karrot-backend
+ https://codeberg.org/karrot/karrot-frontend
« https://dev.karrot.world

Version 1.0

Pentester Martin Cuddy

Authors Martin Cuddy, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Description

0.1 March 13th, 2025 Martin Cuddy Initial draft

0.2 March 31st, 2025 Marcus Bointon Review

1.0 April 1st, 2025 Martin Cuddy Final
Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands
+31 (0)20 2621 255

info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

11
1.2
13
14
15
1.6
16.1
16.2
1.7

2.1
2.2

41
4.2
43
4.4
45
46
47
48
4.9

Appendix 1

Executive Summary
Introduction

Scope of work

Project objectives

Timeline

Results In A Nutshell

Summary of Findings

Findings by Threat Level
Findings by Type

Summary of Recommendations

Methodology
Planning
Risk Classification

Reconnaissance and Fingerprinting

Findings

CLN-002 — Users can change username

CLN-007 — No password policy

CLN-008 — Unrestricted file upload

CLN-001 — Abuse of e-mail change mechanism

CLN-003 — No rate limiting on authentication

CLN-004 — General lack of rate limiting

CLN-005 — Outdated dependencies

CLN-006 — Reserved names deny list not imposed on usernames
CLN-009 — Editors can change activity type

Future Work
Conclusion

Testing team

~N o o o &~ B &~ BB B B

(-}

10

11
11
12
13
15
16
17
18
19
20

22

23

24

1 Executive Summary

1.1 Introduction

Between March 7, 2025 and March 13, 2025, Radically Open Security B.V. carried out a penetration test for Karrot.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following targets:

+ https:/lcodeberg.org/karrot/karrot-backend
* https://codeberg.org/karrot/karrot-frontend
+ https://dev.karrot.world

The scoped services are broken down as follows:

¢ Testing: 2 days
¢ Reporting: 1 days

PM/Reviewing: 0.5 days
+ Total effort: 3.5 days

1.3 Project objectives

ROS will perform a penetration test of the Karrot application with its developers in order to assess its security. To do so
ROS will access the target application and guide Karrot in attempting to find vulnerabilities, exploiting any such found to
try and gain further access and elevated privileges.

1.4 Timeline

The security audit took place between March 7, 2025 and March 13, 2025.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 3 Moderate and 6 Low-severity issues.

4 Radically Open Security B.V.

Public

We noted a number of related issues surrounding authentication: there is no password policy CLN-007 (page 12) and
a lack of rate limiting CLN-004 (page 17), specifically no controls on login attempts CLN-003 (page 16). These

leave Karrot especially vulnerable to various kinds of brute-force-based login attacks such as password guessing and
credential stuffing. A lack of application rate limiting generally also leaves the user e-mail change mechanism open to
abuse CLN-001 (page 15).

We found two cases where API endpoints had broken object property level authorization, whereby users could change
values they should not be able to change in CLN-002 (page 11) and CLN-009 (page 20). Users can also select
any username, including those on a deny list applied to display names CLN-006 (page 19).

We also found that Karrot allows uploading files of any type, and files can later be accessed directly by users. These
leads to a few potential abuses that we illustrated CLN-008 (page 13).

Finally we noted Karrot has numerous outdated dependencies with known security vulnerabilities CLN-005 (page 18).

1.6 Summary of Findings

ID Type Description Threat level

CLN-002 Broken Object Property | Users can change their username by direct PATCH Moderate
Level Authorization request to the API.

CLN-007 Broken Authentication | There is no password policy. Moderate

CLN-008 File Upload Karrot allows users to upload files of any type, with Moderate

potential security consequences. We demonstrate how
this can be abused in a simple phishing attack between
users.

CLN-001 Unrestricted Resource | The mechanism for changing a user's email address is Low
Consumption open to abuse.

CLN-003 Broken Authentication | The login page lacks rate limiting or other controls against | Low
brute-forcing.

CLN-004 Unrestricted Resource | Karrot lacks any application-level rate limiting on Low
Consumption requests to most endpoints. This has a variety of security
consequences, some of which are outlined in separate
findings.
CLN-005 Vulnerable and Karrot has numerous outdated python dependencies. Low

Outdated Components

CLN-006 Insecure Design The hard-coded deny list of reserved names for user Low
display names is not imposed on usernames.

CLN-009 Broken Object Property | It's possible to change an activity's type through the API. | Low
Level Authorization

Fiacalli
L '3*-'5.1.. Executive Summary 5

eyt

1.6.1 Findings by Threat Level

66.7%

1.6.2 Findings by Type

11.1%
22.2%

11.1%

11.1% 'l |

22.2%

22.2%

O
[

Moderate (3)
Low (6)

Broken Object Property Level
Authorization (2)
Broken Authentication (2)

Unrestricted Resource Consumption (2)
File Upload (1)
Vulnerable and Outdated Components (1)

Insecure Design (1)

Radically Open Security B.V.

FEamacilli
e |
Tpandl)

1.7

ID
CLN-002

CLN-007

CLN-008

CLN-001

CLN-003

CLN-004

CLN-005

CLN-006
CLN-009

Type

Broken Object Property
Level Authorization

Broken Authentication

File Upload

Unrestricted Resource
Consumption

Broken Authentication

Unrestricted Resource
Consumption

Vulnerable and
Outdated Components

Insecure Design

Broken Object Property
Level Authorization

Public

Summary of Recommendations

Recommendation

Ensure username is read-only until such time as a username
change feature is fully implemented.

Implement a sensible password policy with a minimum password
length.
Make use of Django's built-in password policy features.

Implement an allow-list for file upload types, only allowing file types
which are considered necessary.

Add general rate limiting on requests to API endpoints, see CLN-004
(page 17).

Implement a "cool down" period between e-mail address changes (e.g.
only allow one e-mail address change per day).

General rate limiting on authenticated and non-authenticated requests
is recommended as in CLN-004 (page 17).

Authentication endpoints should have stricter limiting on login
attempts, for example by limiting the number of attempts for a given
username in a window of time.

Apply these limits to both authentication endpoints /api/auth and /
api-auth/login.

Use UserRateThrottle to impose sensible rate limits on all API
endpoints.

Update all dependencies, django and djangorestframework in
particular.
Implement automated scanning and dependency management.

Apply the RESERVED_NAMES deny list to usernames.

Ensure the activity_type field is read-only.

Executive Summary

2

2.1

Methodology

Planning

Our general approach during penetration tests is as follows:

2.2

Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:
active and passive. A passive attack is always the best starting point as this would normally defeat intrusion
detection systems and other forms of protection afforded to the app or network. This usually involves trying to
discover publicly available information by visiting websites, newsgroups, etc. An active form would be more
intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.
Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more
importantly, try to ascertain what services and operating systems they are running. Visible services are researched
further to tailor subsequent tests to match.

Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results
are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance
privileges to target hosts.

Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to
escalate privileges where access has been obtained (either legitimately though provided credentials, or via
vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate
limits) or by more aggressive brute-force methods. This step also consist of manually testing the application
against the latest (2021) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution
Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

.

Extreme
Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

Radically Open Security B.V.

http://www.pentest-standard.org/index.php/Reporting

Frapacilliy

e |

eyt

Public

High

High risk of security controls being compromised with the potential for significant financial/reputational losses
occurring as a result.

Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses
occurring as a result.

Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses
occurring as a result.

Low

Low risk of security controls being compromised with measurable negative impacts as a result.

Methodology 9

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any
relevant scan output will be referred to in the findings.

* OWASP Zed Attack Proxy — https://github.com/zaproxy/zaproxy
+ safety - https://github.com/pyupio/safety

+ SonarQube - https://sonarqube.org/

¢ Semgrep — https://semgrep.dev/

10 Radically Open Security B.V.

FmaralLig
el |
Treiniy

Public

4 Findings

We have identified the following issues:

4.1 CLN-002 — Users can change username

Vulnerability ID: CLN-002
Vulnerability type: Broken Object Property Level Authorization

Threat level: Moderate

Description:

Users can change their username by direct PATCH request to the API.

Technical description:

Changes to Karrot user settings (display name, location, etc) are achieved via a PATCH request to /api/auth/user/.

PATCH https://dev.karrot.world/api/auth/user/ HTTP/1.1
host: dev.karrot.world

{
"display_name" : "new-display-name",
"id" : 601

}

We found that the username can also be changed if it is included in the j son body:

{

"username" : "new-username'",
"id" : 601

Users are not otherwise able to change their username and this is not an intended ability or implemented feature or
Karrot.

If a user deletes their account, tagged references become unlinked (this also happens if a user changes their username
using the above mechanism). A user can subsequently change their username to the username of a deleted account,
and all tagged mentions will be restored, pointing to the account that has newly assumed the username.

Findings 11

Impact:

+ Users can change their username when they should not be able to.
« Some potential for user impersonation, particularly of deleted accounts.

Recommendation:

* Ensure username is read-only until such time as a username change feature is fully implemented.

See also: https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/.

4.2 CLN-007 — No password policy

Vulnerability ID: CLN-007
Vulnerability type: Broken Authentication

Threat level: Moderate

Description:

There is no password policy.

Technical description:

Karrot lacks any password policy. There are no requirements for password length or complexity, and no mechanism to
prevent common or easily guessed passwords (e.g. using one's username as a password), leaving users able to set
weak passwords.

This exacerbates the lack of anti-brute-force mechanisms on Karrot's authentication endpoints reported in CLN-003
(page 16).

Impact:

+ Users are not required to use a strong password: user passwords are consequently likely to be weak and easily
guessed or brute-forced.

12 Radically Open Security B.V.

https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/

Public

Recommendation:

* Implement a sensible password policy with a minimum password length.

+ Django has excellent built in tools for password validation: requiring minimum password length, rejecting common
and full numeric passwords, and ensuring a password is not too similar to other user characteristics.

» OWASP (quoting NIST) recommends a minimum password length of 8 characters.

See also: https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/.

4.3 CLN-008 — Unrestricted file upload

Vulnerability ID: CLN-008
Vulnerability type: File Upload

Threat level: Moderate

Description:

Karrot allows users to upload files of any type, with potential security consequences. We demonstrate how this can be
abused in a simple phishing attack between users.

Technical description:

Karrot allows users to attach files to any chat message or wall post. All file types and extensions are accepted. These
attachments are accessible to other users of the same conversation or group in the case of wall posts.

The original uploaded file can be directly accessed by a user with sufficient privileges via a URI such as /api/
attachments/162/original/.

Many different potentially dangerous files can be uploaded. Filetypes that are executed client-side, such as . html and
. svg, can be uploaded and linked to so that a user might be deceived into running malicious code as in the example
provided below.

Server-side executable files can also be uploaded, such as . php files. We generally recommended preventing the
upload of such files, unless they are absolutely necessary. In a standard Karrot installation, these files are not executed
as Karrot does not use PHP. However, Karrot can be deployed on the same server alongside PHP applications and in
the case of a misconfiguration such files might become executable.

Fgacal iy

el | Findings 13

eyt

https://docs.djangoproject.com/en/3.0/topics/auth/passwords/#module-django.contrib.auth.password_validation
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-proper-password-strength-controls
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

Example: uploading a malicious . htm1 file to use in a phishing attack

A malicious user can clone Karrot's login page (/#/1ogin/) and modify the page to collect user credentials. The
resulting . htm1 file can be uploaded as an attachment to a wall post, making it accessible to other members of the

group.
To phish another member of the group, the malicious user can include the direct link to the . htm1 attachment in an e-
mail or other message to a target user:

Hi! Check out this new file on our Karrot group: https://karrot.world/api/attachments/162/original/

If the target user opens the link from a browser that is logged into Karrot, they will see what appears to be a login page
for Karrot:
B 1 Login - Karrot Dev w4 o

C @ O & nhttps://dev.karrot.world/api/attachments/159/criginal/ w ¥ ® & =

[LOGIN sk sIGNUP!

‘4 @) Getinvolved! @ Join our upcoming Karrot community activities! Q 4 CLOSE

Password

FORGOT YOUR PASSWORD? SIGN UP! LOGIN

Any credentials entered will be collected by the malicious user. After clicking "LOGIN" the target user can simply be
directed to their Karrot group, making it look like their login worked successfully.

As with many phishing attacks, success relies on the target user not being vigilant, for example not noticing the URL
does not point to the usual login page (although it is under the Karrot instance's domain).

This type of attack is made easier by Karrot's allowing . htm1 attachments which can then be accessed and rendered by
other users.

Impact:

* Alack of restrictions on file types/extensions allows dangerous or malicious files to be uploaded.

14 Radically Open Security B.V.

Fgacal iy
el |
“pawiy

Public

+ Asanexample, a malicious . html phishing page can be uploaded to facilitate phishing attacks against other

users.

Recommendation:

+ Implement an allow-list for file upload types, only allowing file types which are considered necessary.

See also: https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html.

4.4 CLN-001 — Abuse of e-mail change mechanism

Vulnerability ID: CLN-001
Vulnerability type: Unrestricted Resource Consumption

Threat level: Low

Description:

The mechanism for changing a user's email address is open to abuse.

Technical description:

Requests by a user to change their e-mail address are accomplished via the /api/auth/email/ endpoint:

PUT https://dev.karrot.world/api/auth/email/ HTTP/1.1
host: dev.karrot.world

{

"new_email" : "new-email@example.com",
"password" : "password"

3

Karrot sends a verification e-mail to the new e-mail address. A user can immediately request to change their e-mail
again, which triggers another verification e-mail. There is no "cool down" period between requests, and a general lack of
rate limiting/throttling on requests, as we mentioned in see CLN-004 (page 17).

A malicious user can abuse this mechanism to spam arbitrary e-mail addresses. E-mail change requests can be made
repeatedly, alternating between two target e-mail addresses. This can be automated to send a large volume of e-mails in
a short amount of time.

Findings 15

https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

Impact:

* Malicious users can spam target e-mail addresses.
+ Malicious users can waste Karrot's e-mail sending resources, and potentially cause reputational damage to the

sending domain.

Recommendation:

+ Add general rate limiting on requests to API endpoints, see CLN-004 (page 17).
+ Implement a "cool down" period between e-mail address changes (e.g. only allow one e-mail address change per

day).

4.5 CLN-003 — No rate limiting on authentication

Vulnerability ID: CLN-003
Vulnerability type: Broken Authentication

Threat level: Low

Description:

The login page lacks rate limiting or other controls against brute-forcing.

Technical description:

The general lack of rate limiting in Karrot CLN-004 (page 17) has significant consequences for authentication. Login
attempts can be made repeatedly without any restrictions, making brute-force and credential-stuffing attacks much
easier.

Impact:

+ Attackers can more easily brute-force valid credentials, or attempt credential stuffing

16 Radically Open Security B.V.

Fgacal iy

e |

““pendi)

Public

Recommendation:

+ General rate limiting on authenticated and non-authenticated requests is recommended as in CLN-004 (page
17).

» Authentication endpoints should have stricter limiting on login attempts, for example by limiting the number
of attempts for a given username in a window of time. See: https://cheatsheetseries.owasp.org/cheatsheets/
Authentication_Cheat_Sheet.html#protect-against-automated-attacks

+ Apply these limits to both authentication endpoints /api/auth and /api-auth/login.

See also: https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/.

4.6 CLN-004 — General lack of rate limiting

Vulnerability ID: CLN-004
Vulnerability type: Unrestricted Resource Consumption

Threat level: Low

Description:

Karrot lacks any application-level rate limiting on requests to most endpoints. This has a variety of security
consequences, some of which are outlined in separate findings.

Technical description:

Karrot uses the djangorestframework's UserRateThrottle to rate limit user requests, but only for a handful of
endpoints: applications to groups, inviting new users, opening issues, and the status endpoint. All other endpoints have
no rate limiting, most notably the login page and e-mail change mechanism, which we reported in CLN-003 (page 16)
and CLN-001 (page 15).

The lack of rate limiting on other endpoints and applications functions is less consequential but still of concern. An
authenticated user can easily spam the various conversations (direct chats, wall posts, offers, etc) and files can be
attached to these messages. Although there is a limit on 10MB for file and 6 files per message, with the lack of a rate
limit, these limits will do little to hinder a malicious user who wishes to spam a group with messages or fill up server
storage space with attachments.

Karrot lacks a mechanism for group editors to delete such spam messages and attachments or to deal with a malicious
user quickly.

Findings 17

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#protect-against-automated-attacks
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#protect-against-automated-attacks
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/

Impact:

« Specific resource-intensive operations can be abused, such as file upload and e-mail change CLN-001 (page
15).

» Brute-force attacks on authentication are made easier CLN-003 (page 16).

» Authorized users can overwhelm groups with spam.

+ Denial-of-service attacks via excessive requests.

Recommendation:

* UseUserRateThrottle to impose sensible rate limits on all API endpoints.

See also: https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/.

4,7 CLN-005 — Outdated dependencies

Vulnerability ID: CLN-005
Vulnerability type: Vulnerable and Outdated Components

Threat level: Low

Description:

Karrot has numerous outdated python dependencies.

Technical description:
We ran a scan of Karrot using the Python safety scanner which noted numerous (slightly) outdated python
dependencies with known vulnerabilities.

48 vulnerabilities found, O ignored due to policy.
23 fixes suggested, resolving 48 vulnerabilities.

We reviewed the vulnerabilities and found that none were likely to affect Karrot or warrant their own findings.

The client noted that this is due to a move from GitHub to Codeberg and a temporary loss in automated dependency
management.

18 Radically Open Security B.V.

https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/
https://github.com/pyupio/safety

Fgacal iy
el |
“pawiy

Public

Impact:

+ Out-of-date dependencies can contain known or unknown vulnerabilities which, even if not relevant to Karrot
today, can become exploitable as Karrot's development continues.

Recommendation:

+ Update all dependencies, django and djangorestframework in particular.
+ Implement automated scanning and dependency management.

See also: https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/.

4.8 CLN-006 — Reserved names deny list not imposed on usernames

Vulnerability ID: CLN-006
Vulnerability type: Insecure Design

Threat level: Low

Description:

The hard-coded deny list of reserved names for user display names is not imposed on usernames.

Technical description:

Karrot prohibits users from selecting certain display names with a deny list as indicated in the following code snippet
from settings.py:
Names that shouldn't be used by groups or users because they are either confusing or unspecific
Values are case-insensitive
RESERVED_NAMES = (

"karrot",

"foodsaving",
"foodsharing",

As the comment indicates, this is to avoid users choosing a display name that could be confused with the app itself.
However, this prohibition does not extend to usernames, and users can select any of these RESERVED_NAMES at
signup.

Findings 19

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

As we noted, users can change their username, though this ability is unintentional CLN-002 (page 11). Through this
mechanism, users are also not prohibited from changing their username to any of the RESERVED_NAMES.

Impact:

» Users can select a username from the list of RESERVED_NAMES leading to possible confusion.
» Users can change their username to a name from the list of RESERVED_NAMES.

Recommendation:

+ Apply the RESERVED_NAMES deny list to usernames.

4,9 CLN-009 — Editors can change activity type

Vulnerability ID: CLN-009
Vulnerability type: Broken Object Property Level Authorization

Threat level: Low

Description:

It's possible to change an activity's type through the API.

Technical description:

We found that editors can change the activity_type property for an activity by including the change in a PATCH
request to the /api/activities/ endpoint:

PATCH https://dev.karrot.world/api/activities/39785/ HTTP/1.1
host: dev.karrot.world

Content-Disposition: form-data; name="document"; filename="blob"
Content-Type: application/json

{"1d":39785, "activity_ type":360}
----------------------------- 228323054319968193243979893991 - -

20 Radically Open Security B.V.

Public

Changing an activity's type is not possible through the Ul and is not otherwise an implemented feature. This has very
little implication security-wise, but we include it as another Broken Object Property Level Authorization finding, similar but
less consequential to CLN-002 (page 11).

Impact:

+ Editors can change an activity's activity_type through a direct PATCH request.

Recommendation:

o Ensurethe activity_type field is read-only.

Fgacal iy

el | Findings 21

eyt

5 Future Work
* Retest of findings
When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be
performed to ensure that they are effective and have not introduced other security problems.
* Regular security assessments
Security is a process that must be continuously evaluated and improved; this penetration test is just a single
snapshot. Regular audits and ongoing improvements are essential in order to maintain control of your corporate
information security.
22 Radically Open Security B.V.

Fgacal iy

e |

eyt

Public

6 Conclusion

We discovered 3 Moderate and 6 Low-severity issues during this penetration test.

Overall, we found both Karrot's frontend and backend components to be quite securely implemented. We were unable to
find any typical injection-based vulnerabilities, which are common in such social applications with a large attack surface
of user content — and not for lack of trying! Similarly, we found that the backend API was quite robust with well-executed
access controls and authorization on every endpoint. We only found 2 minor gaps in the API's access controls, with
minimal security consequences.

We did find some higher-level oversights in secure application design. A total lack of rate limiting was connected with
several findings, most especially the exposure of authentication to brute-force-based attacks. When combined with a
lack of a password policy, this creates a situation where brute-force attacks on authentication are not only possible but
more likely to succeed. Similarly, Karrot has a very lax policy regarding file uploads with no restrictions on file types.

Karrot is designed with self-organized communities in mind, prioritizing democratic management and horizontal
collaborative relationships based on trust and transparency. Despite the expected basis of trust between users, widely
recommended mitigations to protect users from external attackers and potentially from each other should not be
overlooked.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective
and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process that must be continuously evaluated and improved - this
penetration test is just a one-time snapshot. Regular audits and ongoing improvements are essential in order to maintain
control of your corporate information security. We hope that this pentest report (and the detailed explanations of our
findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this
report.

Conclusion 23

Appendix 1

Testing team

Martin Cuddy
(pentester)

Martin has the OSCP certification and a certificate in applied cybersecurity from
McGill University, Montreal, as well as an MSc. in biology from an earlier life. Besides
pentesting, he is also active in promoting cybersecurity best practices for individuals,
open source software, and self-hosting through workshops and writing. He's often at
Montreal's Foulab hackerspace, or riding a cargo bike around the city.

Melanie Rieback
(approver)

Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaXOring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

24

Radically Open Security B.V.

