
Karrot Penetration Test

Karrot

V 1.0
Amsterdam, April 1st, 2025
Public

Document Properties

Client Karrot

Title Karrot Penetration Test

Targets • https://codeberg.org/karrot/karrot-backend

• https://codeberg.org/karrot/karrot-frontend

• https://dev.karrot.world

Version 1.0

Pentester Martin Cuddy

Authors Martin Cuddy, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 March 13th, 2025 Martin Cuddy Initial draft

0.2 March 31st, 2025 Marcus Bointon Review

1.0 April 1st, 2025 Martin Cuddy Final

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 6

1.6.2 Findings by Type 6

1.7 Summary of Recommendations 7

2 Methodology 8
2.1 Planning 8

2.2 Risk Classification 8

3 Reconnaissance and Fingerprinting 10

4 Findings 11
4.1 CLN-002 — Users can change username 11

4.2 CLN-007 — No password policy 12

4.3 CLN-008 — Unrestricted file upload 13

4.4 CLN-001 — Abuse of e-mail change mechanism 15

4.5 CLN-003 — No rate limiting on authentication 16

4.6 CLN-004 — General lack of rate limiting 17

4.7 CLN-005 — Outdated dependencies 18

4.8 CLN-006 — Reserved names deny list not imposed on usernames 19

4.9 CLN-009 — Editors can change activity type 20

5 Future Work 22

6 Conclusion 23

Appendix 1 Testing team 24

1 Executive Summary

1.1 Introduction

Between March 7, 2025 and March 13, 2025, Radically Open Security B.V. carried out a penetration test for Karrot.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following targets:

• https://codeberg.org/karrot/karrot-backend

• https://codeberg.org/karrot/karrot-frontend

• https://dev.karrot.world

The scoped services are broken down as follows:

• Testing: 2 days

• Reporting: 1 days

• PM/Reviewing: 0.5 days

• Total effort: 3.5 days

1.3 Project objectives

ROS will perform a penetration test of the Karrot application with its developers in order to assess its security. To do so

ROS will access the target application and guide Karrot in attempting to find vulnerabilities, exploiting any such found to

try and gain further access and elevated privileges.

1.4 Timeline

The security audit took place between March 7, 2025 and March 13, 2025.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 3 Moderate and 6 Low-severity issues.

4 Radically Open Security B.V.

Public

We noted a number of related issues surrounding authentication: there is no password policy CLN-007 (page 12) and

a lack of rate limiting CLN-004 (page 17), specifically no controls on login attempts CLN-003 (page 16). These

leave Karrot especially vulnerable to various kinds of brute-force-based login attacks such as password guessing and

credential stuffing. A lack of application rate limiting generally also leaves the user e-mail change mechanism open to

abuse CLN-001 (page 15).

We found two cases where API endpoints had broken object property level authorization, whereby users could change

values they should not be able to change in CLN-002 (page 11) and CLN-009 (page 20). Users can also select

any username, including those on a deny list applied to display names CLN-006 (page 19).

We also found that Karrot allows uploading files of any type, and files can later be accessed directly by users. These

leads to a few potential abuses that we illustrated CLN-008 (page 13).

Finally we noted Karrot has numerous outdated dependencies with known security vulnerabilities CLN-005 (page 18).

1.6 Summary of Findings

ID Type Description Threat level

CLN-002 Broken Object Property
Level Authorization

Users can change their username by direct PATCH
request to the API.

Moderate

CLN-007 Broken Authentication There is no password policy. Moderate

CLN-008 File Upload Karrot allows users to upload files of any type, with
potential security consequences. We demonstrate how
this can be abused in a simple phishing attack between
users.

Moderate

CLN-001 Unrestricted Resource
Consumption

The mechanism for changing a user's email address is
open to abuse.

Low

CLN-003 Broken Authentication The login page lacks rate limiting or other controls against
brute-forcing.

Low

CLN-004 Unrestricted Resource
Consumption

Karrot lacks any application-level rate limiting on
requests to most endpoints. This has a variety of security
consequences, some of which are outlined in separate
findings.

Low

CLN-005 Vulnerable and
Outdated Components

Karrot has numerous outdated python dependencies. Low

CLN-006 Insecure Design The hard-coded deny list of reserved names for user
display names is not imposed on usernames.

Low

CLN-009 Broken Object Property
Level Authorization

It's possible to change an activity's type through the API. Low

Executive Summary 5

1.6.1 Findings by Threat Level

66.7%

33.3%

Moderate (3)

Low (6)

1.6.2 Findings by Type

11.1%

11.1%

11.1%

22.2%

22.2%

22.2%

Broken Object Property Level

Authorization (2)

Broken Authentication (2)

Unrestricted Resource Consumption (2)

File Upload (1)

Vulnerable and Outdated Components (1)

Insecure Design (1)

6 Radically Open Security B.V.

Public

1.7 Summary of Recommendations

ID Type Recommendation

CLN-002 Broken Object Property
Level Authorization

• Ensure username is read-only until such time as a username
change feature is fully implemented.

CLN-007 Broken Authentication • Implement a sensible password policy with a minimum password
length.

• Make use of Django's built-in password policy features.

CLN-008 File Upload • Implement an allow-list for file upload types, only allowing file types
which are considered necessary.

CLN-001 Unrestricted Resource
Consumption

• Add general rate limiting on requests to API endpoints, see CLN-004
(page 17).

• Implement a "cool down" period between e-mail address changes (e.g.
only allow one e-mail address change per day).

CLN-003 Broken Authentication • General rate limiting on authenticated and non-authenticated requests
is recommended as in CLN-004 (page 17).

• Authentication endpoints should have stricter limiting on login
attempts, for example by limiting the number of attempts for a given
username in a window of time.

• Apply these limits to both authentication endpoints /api/auth and /
api-auth/login.

CLN-004 Unrestricted Resource
Consumption

• Use UserRateThrottle to impose sensible rate limits on all API
endpoints.

CLN-005 Vulnerable and
Outdated Components

• Update all dependencies, django and djangorestframework in
particular.

• Implement automated scanning and dependency management.

CLN-006 Insecure Design • Apply the RESERVED_NAMES deny list to usernames.

CLN-009 Broken Object Property
Level Authorization

• Ensure the activity_type field is read-only.

Executive Summary 7

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2021) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

8 Radically Open Security B.V.

http://www.pentest-standard.org/index.php/Reporting

Public

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

Methodology 9

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• OWASP Zed Attack Proxy – https://github.com/zaproxy/zaproxy

• safety – https://github.com/pyupio/safety

• SonarQube – https://sonarqube.org/

• Semgrep – https://semgrep.dev/

10 Radically Open Security B.V.

Public

4 Findings

We have identified the following issues:

4.1 CLN-002 — Users can change username

Vulnerability ID: CLN-002

Vulnerability type: Broken Object Property Level Authorization

Threat level: Moderate

Description:

Users can change their username by direct PATCH request to the API.

Technical description:

Changes to Karrot user settings (display name, location, etc) are achieved via a PATCH request to /api/auth/user/.

PATCH https://dev.karrot.world/api/auth/user/ HTTP/1.1
host: dev.karrot.world

...
{
 "display_name" : "new-display-name",
 "id" : 601
}

We found that the username can also be changed if it is included in the json body:

{
 "username" : "new-username",
 "id" : 601
}

Users are not otherwise able to change their username and this is not an intended ability or implemented feature or

Karrot.

If a user deletes their account, tagged references become unlinked (this also happens if a user changes their username

using the above mechanism). A user can subsequently change their username to the username of a deleted account,

and all tagged mentions will be restored, pointing to the account that has newly assumed the username.

Findings 11

Impact:

• Users can change their username when they should not be able to.

• Some potential for user impersonation, particularly of deleted accounts.

Recommendation:

• Ensure username is read-only until such time as a username change feature is fully implemented.

See also: https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/.

4.2 CLN-007 — No password policy

Vulnerability ID: CLN-007

Vulnerability type: Broken Authentication

Threat level: Moderate

Description:

There is no password policy.

Technical description:

Karrot lacks any password policy. There are no requirements for password length or complexity, and no mechanism to

prevent common or easily guessed passwords (e.g. using one's username as a password), leaving users able to set

weak passwords.

This exacerbates the lack of anti-brute-force mechanisms on Karrot's authentication endpoints reported in CLN-003

(page 16).

Impact:

• Users are not required to use a strong password: user passwords are consequently likely to be weak and easily

guessed or brute-forced.

12 Radically Open Security B.V.

https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/

Public

Recommendation:

• Implement a sensible password policy with a minimum password length.

• Django has excellent built in tools for password validation: requiring minimum password length, rejecting common

and full numeric passwords, and ensuring a password is not too similar to other user characteristics.

• OWASP (quoting NIST) recommends a minimum password length of 8 characters.

See also: https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/.

4.3 CLN-008 — Unrestricted file upload

Vulnerability ID: CLN-008

Vulnerability type: File Upload

Threat level: Moderate

Description:

Karrot allows users to upload files of any type, with potential security consequences. We demonstrate how this can be

abused in a simple phishing attack between users.

Technical description:

Karrot allows users to attach files to any chat message or wall post. All file types and extensions are accepted. These

attachments are accessible to other users of the same conversation or group in the case of wall posts.

The original uploaded file can be directly accessed by a user with sufficient privileges via a URI such as /api/

attachments/162/original/.

Many different potentially dangerous files can be uploaded. Filetypes that are executed client-side, such as .html and

.svg, can be uploaded and linked to so that a user might be deceived into running malicious code as in the example

provided below.

Server-side executable files can also be uploaded, such as .php files. We generally recommended preventing the

upload of such files, unless they are absolutely necessary. In a standard Karrot installation, these files are not executed

as Karrot does not use PHP. However, Karrot can be deployed on the same server alongside PHP applications and in

the case of a misconfiguration such files might become executable.

Findings 13

https://docs.djangoproject.com/en/3.0/topics/auth/passwords/#module-django.contrib.auth.password_validation
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-proper-password-strength-controls
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

Example: uploading a malicious .html file to use in a phishing attack
A malicious user can clone Karrot's login page (/#/login/) and modify the page to collect user credentials. The

resulting .html file can be uploaded as an attachment to a wall post, making it accessible to other members of the

group.

To phish another member of the group, the malicious user can include the direct link to the .html attachment in an e-

mail or other message to a target user:

Hi! Check out this new file on our Karrot group: https://karrot.world/api/attachments/162/original/

If the target user opens the link from a browser that is logged into Karrot, they will see what appears to be a login page

for Karrot:

Any credentials entered will be collected by the malicious user. After clicking "LOGIN" the target user can simply be

directed to their Karrot group, making it look like their login worked successfully.

As with many phishing attacks, success relies on the target user not being vigilant, for example not noticing the URL

does not point to the usual login page (although it is under the Karrot instance's domain).

This type of attack is made easier by Karrot's allowing .html attachments which can then be accessed and rendered by

other users.

Impact:

• A lack of restrictions on file types/extensions allows dangerous or malicious files to be uploaded.

14 Radically Open Security B.V.

Public

• As an example, a malicious .html phishing page can be uploaded to facilitate phishing attacks against other

users.

Recommendation:

• Implement an allow-list for file upload types, only allowing file types which are considered necessary.

See also: https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html.

4.4 CLN-001 — Abuse of e-mail change mechanism

Vulnerability ID: CLN-001

Vulnerability type: Unrestricted Resource Consumption

Threat level: Low

Description:

The mechanism for changing a user's email address is open to abuse.

Technical description:

Requests by a user to change their e-mail address are accomplished via the /api/auth/email/ endpoint:

PUT https://dev.karrot.world/api/auth/email/ HTTP/1.1
host: dev.karrot.world

...
{
 "new_email" : "new-email@example.com",
 "password" : "password"
}

Karrot sends a verification e-mail to the new e-mail address. A user can immediately request to change their e-mail

again, which triggers another verification e-mail. There is no "cool down" period between requests, and a general lack of

rate limiting/throttling on requests, as we mentioned in see CLN-004 (page 17).

A malicious user can abuse this mechanism to spam arbitrary e-mail addresses. E-mail change requests can be made

repeatedly, alternating between two target e-mail addresses. This can be automated to send a large volume of e-mails in

a short amount of time.

Findings 15

https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

Impact:

• Malicious users can spam target e-mail addresses.

• Malicious users can waste Karrot's e-mail sending resources, and potentially cause reputational damage to the

sending domain.

Recommendation:

• Add general rate limiting on requests to API endpoints, see CLN-004 (page 17).

• Implement a "cool down" period between e-mail address changes (e.g. only allow one e-mail address change per

day).

4.5 CLN-003 — No rate limiting on authentication

Vulnerability ID: CLN-003

Vulnerability type: Broken Authentication

Threat level: Low

Description:

The login page lacks rate limiting or other controls against brute-forcing.

Technical description:

The general lack of rate limiting in Karrot CLN-004 (page 17) has significant consequences for authentication. Login

attempts can be made repeatedly without any restrictions, making brute-force and credential-stuffing attacks much

easier.

Impact:

• Attackers can more easily brute-force valid credentials, or attempt credential stuffing

16 Radically Open Security B.V.

Public

Recommendation:

• General rate limiting on authenticated and non-authenticated requests is recommended as in CLN-004 (page

17).

• Authentication endpoints should have stricter limiting on login attempts, for example by limiting the number

of attempts for a given username in a window of time. See: https://cheatsheetseries.owasp.org/cheatsheets/

Authentication_Cheat_Sheet.html#protect-against-automated-attacks

• Apply these limits to both authentication endpoints /api/auth and /api-auth/login.

See also: https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/.

4.6 CLN-004 — General lack of rate limiting

Vulnerability ID: CLN-004

Vulnerability type: Unrestricted Resource Consumption

Threat level: Low

Description:

Karrot lacks any application-level rate limiting on requests to most endpoints. This has a variety of security

consequences, some of which are outlined in separate findings.

Technical description:

Karrot uses the djangorestframework's UserRateThrottle to rate limit user requests, but only for a handful of

endpoints: applications to groups, inviting new users, opening issues, and the status endpoint. All other endpoints have

no rate limiting, most notably the login page and e-mail change mechanism, which we reported in CLN-003 (page 16)

and CLN-001 (page 15).

The lack of rate limiting on other endpoints and applications functions is less consequential but still of concern. An

authenticated user can easily spam the various conversations (direct chats, wall posts, offers, etc) and files can be

attached to these messages. Although there is a limit on 10MB for file and 6 files per message, with the lack of a rate

limit, these limits will do little to hinder a malicious user who wishes to spam a group with messages or fill up server

storage space with attachments.

Karrot lacks a mechanism for group editors to delete such spam messages and attachments or to deal with a malicious

user quickly.

Findings 17

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#protect-against-automated-attacks
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#protect-against-automated-attacks
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/

Impact:

• Specific resource-intensive operations can be abused, such as file upload and e-mail change CLN-001 (page

15).

• Brute-force attacks on authentication are made easier CLN-003 (page 16).

• Authorized users can overwhelm groups with spam.

• Denial-of-service attacks via excessive requests.

Recommendation:

• Use UserRateThrottle to impose sensible rate limits on all API endpoints.

See also: https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/.

4.7 CLN-005 — Outdated dependencies

Vulnerability ID: CLN-005

Vulnerability type: Vulnerable and Outdated Components

Threat level: Low

Description:

Karrot has numerous outdated python dependencies.

Technical description:

We ran a scan of Karrot using the Python safety scanner which noted numerous (slightly) outdated python

dependencies with known vulnerabilities.

48 vulnerabilities found, 0 ignored due to policy.
23 fixes suggested, resolving 48 vulnerabilities.

We reviewed the vulnerabilities and found that none were likely to affect Karrot or warrant their own findings.

The client noted that this is due to a move from GitHub to Codeberg and a temporary loss in automated dependency

management.

18 Radically Open Security B.V.

https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/
https://github.com/pyupio/safety

Public

Impact:

• Out-of-date dependencies can contain known or unknown vulnerabilities which, even if not relevant to Karrot

today, can become exploitable as Karrot's development continues.

Recommendation:

• Update all dependencies, django and djangorestframework in particular.

• Implement automated scanning and dependency management.

See also: https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/.

4.8 CLN-006 — Reserved names deny list not imposed on usernames

Vulnerability ID: CLN-006

Vulnerability type: Insecure Design

Threat level: Low

Description:

The hard-coded deny list of reserved names for user display names is not imposed on usernames.

Technical description:

Karrot prohibits users from selecting certain display names with a deny list as indicated in the following code snippet

from settings.py:

Names that shouldn't be used by groups or users because they are either confusing or unspecific
Values are case-insensitive
RESERVED_NAMES = (
 "karrot",
 "foodsaving",
 "foodsharing",
)

As the comment indicates, this is to avoid users choosing a display name that could be confused with the app itself.

However, this prohibition does not extend to usernames, and users can select any of these RESERVED_NAMES at

signup.

Findings 19

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

As we noted, users can change their username, though this ability is unintentional CLN-002 (page 11). Through this

mechanism, users are also not prohibited from changing their username to any of the RESERVED_NAMES.

Impact:

• Users can select a username from the list of RESERVED_NAMES leading to possible confusion.

• Users can change their username to a name from the list of RESERVED_NAMES.

Recommendation:

• Apply the RESERVED_NAMES deny list to usernames.

4.9 CLN-009 — Editors can change activity type

Vulnerability ID: CLN-009

Vulnerability type: Broken Object Property Level Authorization

Threat level: Low

Description:

It's possible to change an activity's type through the API.

Technical description:

We found that editors can change the activity_type property for an activity by including the change in a PATCH

request to the /api/activities/ endpoint:

PATCH https://dev.karrot.world/api/activities/39785/ HTTP/1.1
host: dev.karrot.world

...
Content-Disposition: form-data; name="document"; filename="blob"
Content-Type: application/json

{"id":39785,"activity_type":360}
-----------------------------228323054319968193243979893991--

20 Radically Open Security B.V.

Public

Changing an activity's type is not possible through the UI and is not otherwise an implemented feature. This has very

little implication security-wise, but we include it as another Broken Object Property Level Authorization finding, similar but

less consequential to CLN-002 (page 11).

Impact:

• Editors can change an activity's activity_type through a direct PATCH request.

Recommendation:

• Ensure the activity_type field is read-only.

Findings 21

5 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is a process that must be continuously evaluated and improved; this penetration test is just a single

snapshot. Regular audits and ongoing improvements are essential in order to maintain control of your corporate

information security.

22 Radically Open Security B.V.

Public

6 Conclusion

We discovered 3 Moderate and 6 Low-severity issues during this penetration test.

Overall, we found both Karrot's frontend and backend components to be quite securely implemented. We were unable to

find any typical injection-based vulnerabilities, which are common in such social applications with a large attack surface

of user content – and not for lack of trying! Similarly, we found that the backend API was quite robust with well-executed

access controls and authorization on every endpoint. We only found 2 minor gaps in the API's access controls, with

minimal security consequences.

We did find some higher-level oversights in secure application design. A total lack of rate limiting was connected with

several findings, most especially the exposure of authentication to brute-force-based attacks. When combined with a

lack of a password policy, this creates a situation where brute-force attacks on authentication are not only possible but

more likely to succeed. Similarly, Karrot has a very lax policy regarding file uploads with no restrictions on file types.

Karrot is designed with self-organized communities in mind, prioritizing democratic management and horizontal

collaborative relationships based on trust and transparency. Despite the expected basis of trust between users, widely

recommended mitigations to protect users from external attackers and potentially from each other should not be

overlooked.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process that must be continuously evaluated and improved – this

penetration test is just a one-time snapshot. Regular audits and ongoing improvements are essential in order to maintain

control of your corporate information security. We hope that this pentest report (and the detailed explanations of our

findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 23

Appendix 1 Testing team

Martin Cuddy
(pentester)

Martin has the OSCP certification and a certificate in applied cybersecurity from
McGill University, Montreal, as well as an MSc. in biology from an earlier life. Besides
pentesting, he is also active in promoting cybersecurity best practices for individuals,
open source software, and self-hosting through workshops and writing. He's often at
Montreal's Foulab hackerspace, or riding a cargo bike around the city.

Melanie Rieback
(approver)

Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

24 Radically Open Security B.V.

